2D interpolation example

  1. Kaufmann, 2020 - 2022.

[1]:
import numpy as np
import matplotlib.pyplot as plt
import pandas as pd
import geopandas as gpd
from geometron.interpolation import interpolate_xyv
from shapely.geometry import Point

Read the dataset, create a geodataframe and display it

[2]:
df = pd.read_csv('./data/XYV_example_dataset.csv', sep='\t')
geometry = [Point(xy) for xy in zip(df.Easting, df.Northing)]
crs = 'epsg:31370'
gdf = gpd.GeoDataFrame(df, crs=crs, geometry=geometry)
gdf=gdf.query('Elevation==Elevation') # remove nan values
[3]:
gdf.head()
[3]:
Unnamed: 0 Easting Northing Elevation geometry
0 1 168659.106047 104327.904232 268.095 POINT (168659.106 104327.904)
1 2 168659.116345 104328.084830 268.106 POINT (168659.116 104328.085)
2 3 168659.290645 104328.006288 268.125 POINT (168659.291 104328.006)
3 4 168659.330225 104328.074277 268.104 POINT (168659.330 104328.074)
4 5 168659.379590 104328.098180 268.116 POINT (168659.380 104328.098)
[4]:
fig, ax = plt.subplots(figsize=(12,8))
gdf.plot(ax=ax, column='Elevation', markersize=0.75, legend=True)
[4]:
<Axes: >
../../_images/examples_geophysics_2D_interpolation_example_5_1.png

Interpolate values on a structured grid

set interpolation grid extent and limit values for representation in plots

[5]:
extent = [168650,169150,104250,104450]
vlim = [265, 275]
[6]:
fig, ax = plt.subplots(figsize=(12,8))
v, im = interpolate_xyv(gdf, col='Elevation', ax=ax, plot=True, cmap='terrain')
gdf.plot(ax=ax, markersize=0.25, color='grey', legend=False)
fig.colorbar(im, extend='both', label='Elevation [m]')
ax.grid('on')
../../_images/examples_geophysics_2D_interpolation_example_9_0.png

Interpolate values on an unstructured grid

Randomly sample the points where to interpolate the data

[7]:
n_samples = 100
xy=np.vstack([np.random.uniform(extent[0], extent[1], n_samples), np.random.uniform(extent[2], extent[3], n_samples)]).T

Interpolate and display the interpolated map with the triangulation

[8]:
_, ax = plt.subplots(figsize=(12,8))
v_tri, im = interpolate_xyv(gdf, col='Elevation', xy=xy, ax=ax, levels= 16, cmap='terrain')
ax.triplot(xy[:,0], xy[:,1], color='black', linewidth=0.25)
gdf.plot(ax=ax, markersize=0.25, color='grey', legend=False)
fig.colorbar(im, ax=ax)
[8]:
<matplotlib.colorbar.Colorbar at 0x7f52363bf040>
../../_images/examples_geophysics_2D_interpolation_example_14_1.png